本repo包含了我用于训练原神VITS模型对源代码做出的修改,以及新的config文件。
由于各种原因,模型和数据集暂无法公布,感兴趣可以自行提取,自行训练。
此外,也可以尝试使用公开的api:http://245671.proxy.nscc-gz.cn:8888/ 来进行尝试,此API可用于二创等用途,但禁止用于任何商业用途。 可视化合成在写了 感谢星尘以及国家超级计算广州中心提供的算力支持,感谢VITS模型作者Jaehyeon Kim, Jungil Kong, and Juhee Son,感谢ContentVEC作者 Kaizhi Qian. 本模型训练时使用的所有音频文件版权属于米哈游科技(上海)有限公司。
支持的说话者: ['派蒙', '凯亚', '安柏', '丽莎', '琴', '香菱', '枫原万叶', '迪卢克', '温迪', '可莉', '早柚', '托马', '芭芭拉', '优菈', '云堇', '钟离', '魈', '凝光', '雷电将军', '北斗', '甘雨', '七七', '刻晴', '神里绫华', '戴因斯雷布', '雷泽', '神里绫人', '罗莎莉亚', '阿贝多', '八重神子', '宵宫', '荒泷一斗', '九条裟罗', '夜兰', '珊瑚宫心海', '五郎', '散兵', '女士', '达达利亚', '莫娜', '班尼特', '申鹤', '行秋', '烟绯', '久岐忍', '辛焱', '砂糖', '胡桃', '重云', '菲谢尔', '诺艾尔', '迪奥娜', '鹿野院平藏']
Query String 参数:
参数
类型
值
text
字符串
生成的文本,支持常见标点符号。英文可能无法正常生成,数字请转换为对应的汉字再进行生成。
speaker
字符串
说话者名称。必须是上面的名称之一。
noise
浮点数
生成时使用的 noise_factor,可用于控制感情等变化程度。默认为0.667。
format
字符串
生成语音的格式,必须为mp3或者wav。默认为mp3。
示例:http://233366.proxy.nscc-gz.cn:8888/?text=你好&speaker=枫原万叶
此外,也可以尝试使用公开的api:http://233366.proxy.nscc-gz.cn:8888/ 来进行尝试,此API可用于二创等用途,但禁止用于任何商业用途。 请注意多次生成的效果不会一致,可以多次尝试来选择一次较好的效果。 同时支持可视化合成:http://150.158.164.18:9069/ 感谢星尘以及国家超级计算广州中心提供的算力支持,感谢VITS模型作者Jaehyeon Kim, Jungil Kong, and Juhee Son,本模型训练时使用的所有音频文件版权属于米哈游科技(上海)有限公司。
Query String 参数:
参数
类型
值
text
字符串
生成的文本,支持常见标点符号。英文可能无法正常生成,数字请转换为对应的汉字再进行生成。
speaker
字符串
说话者名称。必须是上面的名称之一。
noise
浮点数
生成时使用的 noise_factor,可用于控制感情等变化程度。默认为0.667。
noisew
浮点数
生成时使用的 noise_factor_w,可用于控制音素发音长度变化程度。默认为0.8。
length
浮点数
生成时使用的 length_factor,可用于控制整体语速。默认为1.2。
format
字符串
生成语音的格式,必须为mp3或者wav。默认为mp3。
示例:http://233366.proxy.nscc-gz.cn:8888/?text=你好&speaker=派蒙
In our recent paper, we propose VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech.
Several recent end-to-end text-to-speech (TTS) models enabling single-stage training and parallel sampling have been proposed, but their sample quality does not match that of two-stage TTS systems. In this work, we present a parallel end-to-end TTS method that generates more natural sounding audio than current two-stage models. Our method adopts variational inference augmented with normalizing flows and an adversarial training process, which improves the expressive power of generative modeling. We also propose a stochastic duration predictor to synthesize speech with diverse rhythms from input text. With the uncertainty modeling over latent variables and the stochastic duration predictor, our method expresses the natural one-to-many relationship in which a text input can be spoken in multiple ways with different pitches and rhythms. A subjective human evaluation (mean opinion score, or MOS) on the LJ Speech, a single speaker dataset, shows that our method outperforms the best publicly available TTS systems and achieves a MOS comparable to ground truth.
Visit our demo for audio samples.
We also provide the pretrained models.
** Update note: Thanks to Rishikesh (ऋषिकेश), our interactive TTS demo is now available on Colab Notebook.
VITS at training
VITS at inference
Install python requirements. Please refer requirements.txt
apt-get install espeak
Download datasets
ln -s /path/to/LJSpeech-1.1/wavs DUMMY1
ln -s /path/to/VCTK-Corpus/downsampled_wavs DUMMY2
# Cython-version Monotonoic Alignment Search
cd monotonic_align
python setup.py build_ext --inplace
# Preprocessing (g2p) for your own datasets. Preprocessed phonemes for LJ Speech and VCTK have been already provided.
# python preprocess.py --text_index 1 --filelists filelists/ljs_audio_text_train_filelist.txt filelists/ljs_audio_text_val_filelist.txt filelists/ljs_audio_text_test_filelist.txt
# python preprocess.py --text_index 2 --filelists filelists/vctk_audio_sid_text_train_filelist.txt filelists/vctk_audio_sid_text_val_filelist.txt filelists/vctk_audio_sid_text_test_filelist.txt
# LJ Speech
python train.py -c configs/ljs_base.json -m ljs_base
# VCTK
python train_ms.py -c configs/vctk_base.json -m vctk_base
See inference.ipynb
原网址: 访问
创建于: 2024-03-07 16:16:30
目录: default
标签: 无
未标明原创文章均为采集,版权归作者所有,转载无需和我联系,请注明原出处,南摩阿彌陀佛,知识,不只知道,要得到
java windows火焰图_mob64ca12ec8020的技术博客_51CTO博客 - 在windows下不可行,不知道作者是怎样搞的 监听SpringBoot 服务启动成功事件并打印信息_监听springboot启动完毕-CSDN博客 SpringBoot中就绪探针和存活探针_management.endpoint.health.probes.enabled-CSDN博客 u2u转换板 - 嘉立创EDA开源硬件平台 Spring Boot 项目的轻量级 HTTP 客户端 retrofit 框架,快来试试它!_Java精选-CSDN博客 手把手教你打造一套最牛的知识笔记管理系统! - 知乎 - 想法有重合-理论可参考 安宇雨 闲鱼 机械键盘 客制化 开贴记录 文本 linux 使用find命令查找包含某字符串的文件_beijihukk的博客-CSDN博客_find 查找字符串 ---- mac 也适用 安宇雨 打字音 记录集合 B站 bilibili 自行搭建 开坑 真正的客制化 安宇雨 黑苹果开坑 查找工具包maven pom 引用地 工具网站 Dantelis 介绍的玩轴入坑攻略 --- 关于轴的一些说法 --- 非官方 ---- 心得而已 --- 长期开坑更新 [本人问题][新开坑位]关于自动化测试的工具与平台应用 机械键盘 开团 网站记录 -- 能做一个收集的程序就好了 不过现在没时间 -- 信息大多是在群里发的 - 你要让垃圾佬 都去一个地方看难度也是很大的 精神支柱 [超级前台]sprinbboot maven superdesk-app 记录 [信息有用] [环境准备] [基本完成] [sebp/elk] 给已创建的Docker容器增加新的端口映射 - qq_30599553的博客 - CSDN博客 [正在研究] Elasticsearch, Logstash, Kibana (ELK) Docker image documentation elasticsearch centos 安装记录 及 启动手记 正式服务器 39 elasticsearch 问题合集 不断更新 6.1.1 | 6.5.1 两个版本 博客程序 - 测试 - bug记录 等等问题 laravel的启动过程解析 - lpfuture - 博客园 OAuth2 Server PHP 用 Laravel 搭建带 OAuth2 验证的 RESTful 服务 | Laravel China 社区 - 高品质的 Laravel 和 PHP 开发者社区 利用Laravel 搭建oauth2 API接口 附 Unauthenticated 解决办法 - 煮茶的博客 - SegmentFault 思否 使用 OAuth2-Server-php 搭建 OAuth2 Server - 午时的海 - 博客园 基于PHP构建OAuth 2.0 服务端 认证平台 - Endv - 博客园 Laravel 的 Artisan 命令行工具 Laravel 的文件系统和云存储功能集成 浅谈Chromium中的设计模式--终--Observer模式 浅谈Chromium中的设计模式--二--pre/post和Delegate模式 浅谈Chromium中的设计模式--一--Chromium中模块分层和进程模型 DeepMind 4 Hacking Yourself README.md update 20211011
Laravel China 简书 知乎 博客园 CSDN博客 开源中国 Go Further Ryan是菜鸟 | LNMP技术栈笔记 云栖社区-阿里云 Netflix技术博客 Techie Delight Linkedin技术博客 Dropbox技术博客 Facebook技术博客 淘宝中间件团队 美团技术博客 360技术博客 古巷博客 - 一个专注于分享的不正常博客 软件测试知识传播 - 测试窝 有赞技术团队 阮一峰 语雀 静觅丨崔庆才的个人博客 软件测试从业者综合能力提升 - isTester IBM Java 开发 使用开放 Java 生态系统开发现代应用程序 pengdai 一个强大的博主 HTML5资源教程 | 分享HTML5开发资源和开发教程 蘑菇博客 - 专注于技术分享的博客平台 个人博客-leapMie 流星007 CSDN博客 - 舍其小伙伴 稀土掘金 Go 技术论坛 | Golang / Go 语言中国知识社区
最新评论