摘要: 深度学习背后的主要原因是人工智能应该从人脑中汲取灵感。本文就用一个小例子无死角的介绍一下深度学习!
人脑模拟
深度学习背后的主要原因是人工智能应该从人脑中汲取灵感。此观点引出了“神经网络”这一术语。人脑中包含数十亿个神经元,它们之间有数万个连接。很多情况下,深度学习算法和人脑相似,因为人脑和深度学习模型都拥有大量的编译单元(神经元),这些编译单元(神经元)在独立的情况下都不太智能,但是当他们相互作用时就会变得智能。
我认为人们需要了解到深度学习正在使得很多幕后的事物变得更好。深度学习已经应用于谷歌搜索和图像搜索,你可以通过它搜索像“拥抱”这样的词语以获得相应的图像。-杰弗里·辛顿
神经元
神经网络的基本构建模块是人工神经元,它模仿了人类大脑的神经元。这些神经元是简单、强大的计算单元,拥有加权输入信号并且使用激活函数产生输出信号。这些神经元分布在神经网络的几个层中。
inputs 输入 outputs 输出 weights 权值 activation 激活
人工神经网络的工作原理是什么?
深度学习由人工神经网络构成,该网络模拟了人脑中类似的网络。当数据穿过这个人工网络时,每一层都会处理这个数据的一方面,过滤掉异常值,辨认出熟悉的实体,并产生最终输出。
输入层:该层由神经元组成,这些神经元只接收输入信息并将它传递到其他层。输入层的图层数应等于数据集里的属性或要素的数量。输出层:输出层具有预测性,其主要取决于你所构建的模型类型。隐含层:隐含层处于输入层和输出层之间,以模型类型为基础。隐含层包含大量的神经元。处于隐含层的神经元会先转化输入信息,再将它们传递出去。随着网络受训练,权重得到更新,从而使其更具前瞻性。
神经元的权重
权重是指两个神经元之间的连接的强度或幅度。你如果熟悉线性回归的话,可以将输入的权重类比为我们在回归方程中用的系数。权重通常被初始化为小的随机数值,比如数值0-1。
前馈深度网络
前馈监督神经网络曾是第一个也是最成功的学习算法。该网络也可被称为深度网络、多层感知机(MLP)或简单神经网络,并且阐明了具有单一隐含层的原始架构。每个神经元通过某个权重和另一个神经元相关联。
该网络处理向前处理输入信息,激活神经元,最终产生输出值。在此网络中,这称为前向传递。
input layer 输入层 hidden layer 输出层 output layer 输出层
激活函数
激活函数就是求和加权的输入到神经元的输出的映射。之所以称之为激活函数或传递函数是因为它控制着激活神经元的初始值和输出信号的强度。
用数学表示为:
我们有许多激活函数,其中使用最多的是整流线性单元函数、双曲正切函数和solfPlus函数。
激活函数的速查表如下:
反向传播
在网络中,我们将预测值与预期输出值相比较,并使用函数计算其误差。然后,这个误差会传回这个网络,每次传回一个层,权重也会根绝其导致的误差值进行更新。这个聪明的数学法是反向传播算法。这个步骤会在训练数据的所有样本中反复进行,整个训练数据集的网络更新一轮称为一个时期。一个网络可受训练数十、数百或数千个时期。
prediction error 预测误差
代价函数和梯度下降
代价函数度量了神经网络对给定的训练输入和预期输出“有多好”。该函数可能取决于权重、偏差等属性。
代价函数是单值的,并不是一个向量,因为它从整体上评估神经网络的性能。在运用梯度下降最优算法时,权重在每个时期后都会得到增量式地更新。
兼容代价函数
用数学表述为差值平方和:
target 目标值 output 输出值
权重更新的大小和方向是由在代价梯度的反向上采取步骤计算出的。
其中η 是学习率
其中Δw是包含每个权重系数w的权重更新的向量,其计算方式如下:
target 目标值 output 输出值
图表中会考虑到单系数的代价函数
initial weight 初始权重 gradient 梯度 global cost minimum 代价极小值
在导数达到最小误差值之前,我们会一直计算梯度下降,并且每个步骤都会取决于斜率(梯度)的陡度。
多层感知器(前向传播)
这类网络由多层神经元组成,通常这些神经元以前馈方式(向前传播)相互连接。一层中的每个神经元可以直接连接后续层的神经元。在许多应用中,这些网络的单元会采用S型函数或整流线性单元(整流线性激活)函数作为激活函数。
现在想想看要找出处理次数这个问题,给定的账户和家庭成员作为输入
要解决这个问题,首先,我们需要先创建一个前向传播神经网络。我们的输入层将是家庭成员和账户的数量,隐含层数为1, 输出层将是处理次数。
将图中输入层到输出层的给定权重作为输入:家庭成员数为2、账户数为3。
现在将通过以下步骤使用前向传播来计算隐含层(i,j)和输出层(k)的值。
步骤:
1, 乘法-添加方法。
2, 点积(输入*权重)。
3,一次一个数据点的前向传播。
4, 输出是该数据点的预测。
i的值将从相连接的神经元所对应的输入值和权重中计算出来。
i = (2 1) + (3 1) → i = 5
同样地,j = (2 -1) + (3 1) → j = 1
K = (5 2) + (1 -1) → k = 9
Python中的多层感知器问题的解决
激活函数的使用
为了使神经网络达到其最大预测能力,我们需要在隐含层应用一个激活函数,以捕捉非线性。我们通过将值代入方程式的方式来在输入层和输出层应用激活函数。
这里我们使用整流线性激活(ReLU):
用Keras开发第一个神经网络
关于Keras:
Keras是一个高级神经网络的应用程序编程接口,由Python编写,能够搭建在TensorFlow,CNTK,或Theano上。
使用PIP在设备上安装Keras,并且运行下列指令。
1,加载数据;
2,创建模型;
3,编译模型;
4,拟合模型;
5,评估模型;
开发Keras模型
全连接层用Dense表示。我们可以指定层中神经元的数量作为第一参数,指定初始化方法为第二参数,即初始化参数,并且用激活参数确定激活函数。既然模型已经创建,我们就可以编译它。我们在底层库(也称为后端)用高效数字库编译模型,底层库可以用Theano或TensorFlow。目前为止,我们已经完成了创建模型和编译模型,为进行有效计算做好了准备。现在可以在PIMA数据上运行模型了。我们可以在模型上调用拟合函数f(),以在数据上训练或拟合模型。
我们先从KERAS中的程序开始,
神经网络一直训练到150个时期,并返回精确值。
阿里云云栖社区组织翻译。
文章原标题《Deep Learning With Python》
作者:Vihar Kurama
译者:荷叶。
原文链接
本文为云栖社区原创内容,未经允许不得转载。
原网址: 访问
创建于: 2018-10-13 16:24:36
目录: default
标签: 无
未标明原创文章均为采集,版权归作者所有,转载无需和我联系,请注明原出处,南摩阿彌陀佛,知识,不只知道,要得到
java windows火焰图_mob64ca12ec8020的技术博客_51CTO博客 - 在windows下不可行,不知道作者是怎样搞的 监听SpringBoot 服务启动成功事件并打印信息_监听springboot启动完毕-CSDN博客 SpringBoot中就绪探针和存活探针_management.endpoint.health.probes.enabled-CSDN博客 u2u转换板 - 嘉立创EDA开源硬件平台 Spring Boot 项目的轻量级 HTTP 客户端 retrofit 框架,快来试试它!_Java精选-CSDN博客 手把手教你打造一套最牛的知识笔记管理系统! - 知乎 - 想法有重合-理论可参考 安宇雨 闲鱼 机械键盘 客制化 开贴记录 文本 linux 使用find命令查找包含某字符串的文件_beijihukk的博客-CSDN博客_find 查找字符串 ---- mac 也适用 安宇雨 打字音 记录集合 B站 bilibili 自行搭建 开坑 真正的客制化 安宇雨 黑苹果开坑 查找工具包maven pom 引用地 工具网站 Dantelis 介绍的玩轴入坑攻略 --- 关于轴的一些说法 --- 非官方 ---- 心得而已 --- 长期开坑更新 [本人问题][新开坑位]关于自动化测试的工具与平台应用 机械键盘 开团 网站记录 -- 能做一个收集的程序就好了 不过现在没时间 -- 信息大多是在群里发的 - 你要让垃圾佬 都去一个地方看难度也是很大的 精神支柱 [超级前台]sprinbboot maven superdesk-app 记录 [信息有用] [环境准备] [基本完成] [sebp/elk] 给已创建的Docker容器增加新的端口映射 - qq_30599553的博客 - CSDN博客 [正在研究] Elasticsearch, Logstash, Kibana (ELK) Docker image documentation elasticsearch centos 安装记录 及 启动手记 正式服务器 39 elasticsearch 问题合集 不断更新 6.1.1 | 6.5.1 两个版本 博客程序 - 测试 - bug记录 等等问题 laravel的启动过程解析 - lpfuture - 博客园 OAuth2 Server PHP 用 Laravel 搭建带 OAuth2 验证的 RESTful 服务 | Laravel China 社区 - 高品质的 Laravel 和 PHP 开发者社区 利用Laravel 搭建oauth2 API接口 附 Unauthenticated 解决办法 - 煮茶的博客 - SegmentFault 思否 使用 OAuth2-Server-php 搭建 OAuth2 Server - 午时的海 - 博客园 基于PHP构建OAuth 2.0 服务端 认证平台 - Endv - 博客园 Laravel 的 Artisan 命令行工具 Laravel 的文件系统和云存储功能集成 浅谈Chromium中的设计模式--终--Observer模式 浅谈Chromium中的设计模式--二--pre/post和Delegate模式 浅谈Chromium中的设计模式--一--Chromium中模块分层和进程模型 DeepMind 4 Hacking Yourself README.md update 20211011
Laravel China 简书 知乎 博客园 CSDN博客 开源中国 Go Further Ryan是菜鸟 | LNMP技术栈笔记 云栖社区-阿里云 Netflix技术博客 Techie Delight Linkedin技术博客 Dropbox技术博客 Facebook技术博客 淘宝中间件团队 美团技术博客 360技术博客 古巷博客 - 一个专注于分享的不正常博客 软件测试知识传播 - 测试窝 有赞技术团队 阮一峰 语雀 静觅丨崔庆才的个人博客 软件测试从业者综合能力提升 - isTester IBM Java 开发 使用开放 Java 生态系统开发现代应用程序 pengdai 一个强大的博主 HTML5资源教程 | 分享HTML5开发资源和开发教程 蘑菇博客 - 专注于技术分享的博客平台 个人博客-leapMie 流星007 CSDN博客 - 舍其小伙伴 稀土掘金 Go 技术论坛 | Golang / Go 语言中国知识社区
最新评论