tensorflow项目构建流程
博客:http://blog.csdn.net/hjimce
微博:黄锦池-hjimce qq:1393852684
一、构建路线
个人感觉对于任何一个深度学习库,如mxnet、tensorflow、theano、caffe等,基本上我都采用同样的一个学习流程,大体流程如下:
(1)训练阶段:数据打包-》网络构建、训练-》模型保存-》可视化查看损失函数、验证精度
(2)测试阶段:模型加载-》测试图片读取-》预测显示结果
(3)移植阶段:量化、压缩加速-》微调-》C++移植打包-》上线
这边我就以tensorflow为例子,讲解整个流程的大体架构,完成一个深度学习项目所需要熟悉的过程代码。
二、训练、测试阶段
1、tensorflow打包数据
这一步对于tensorflow来说,也可以直接自己在线读取:.jpg图片、标签文件等,然后通过phaceholder变量,把数据送入网络中,进行计算。
不过这种效率比较低,对于大规模训练数据来说,我们需要一个比较高效的方式,tensorflow建议我们采用tfrecoder进行高效数据读取。学习tensorflow一定要学会tfrecoder文件写入、读取,具体示例代码如下:
#coding=utf-8#tensorflow高效数据读取训练import tensorflow as tfimport cv2 #把train.txt文件格式,每一行:图片路径名 类别标签#奖数据打包,转换成tfrecords格式,以便后续高效读取def encode_to_tfrecords(lable_file,data_root,new_name='data.tfrecords',resize=None): writer=tf.python_io.TFRecordWriter(data_root+'/'+new_name) num_example=0 with open(lable_file,'r') as f: for l in f.readlines(): l=l.split() image=cv2.imread(data_root+"/"+l[0]) if resize is not None: image=cv2.resize(image,resize)#为了 height,width,nchannel=image.shape label=int(l[1]) example=tf.train.Example(features=tf.train.Features(feature={ 'height':tf.train.Feature(int64_list=tf.train.Int64List(value=[height])), 'width':tf.train.Feature(int64_list=tf.train.Int64List(value=[width])), 'nchannel':tf.train.Feature(int64_list=tf.train.Int64List(value=[nchannel])), 'image':tf.train.Feature(bytes_list=tf.train.BytesList(value=[image.tobytes()])), 'label':tf.train.Feature(int64_list=tf.train.Int64List(value=[label])) })) serialized=example.SerializeToString() writer.write(serialized) num_example+=1 print lable_file,"样本数据量:",num_example writer.close()#读取tfrecords文件def decode_from_tfrecords(filename,num_epoch=None): filename_queue=tf.train.string_input_producer([filename],num_epochs=num_epoch)#因为有的训练数据过于庞大,被分成了很多个文件,所以第一个参数就是文件列表名参数 reader=tf.TFRecordReader() _,serialized=reader.read(filename_queue) example=tf.parse_single_example(serialized,features={ 'height':tf.FixedLenFeature([],tf.int64), 'width':tf.FixedLenFeature([],tf.int64), 'nchannel':tf.FixedLenFeature([],tf.int64), 'image':tf.FixedLenFeature([],tf.string), 'label':tf.FixedLenFeature([],tf.int64) }) label=tf.cast(example['label'], tf.int32) image=tf.decode_raw(example['image'],tf.uint8) image=tf.reshape(image,tf.pack([ tf.cast(example['height'], tf.int32), tf.cast(example['width'], tf.int32), tf.cast(example['nchannel'], tf.int32)])) #label=example['label'] return image,label#根据队列流数据格式,解压出一张图片后,输入一张图片,对其做预处理、及样本随机扩充def get_batch(image, label, batch_size,crop_size): #数据扩充变换 distorted_image = tf.random_crop(image, [crop_size, crop_size, 3])#随机裁剪 distorted_image = tf.image.random_flip_up_down(distorted_image)#上下随机翻转 #distorted_image = tf.image.random_brightness(distorted_image,max_delta=63)#亮度变化 #distorted_image = tf.image.random_contrast(distorted_image,lower=0.2, upper=1.8)#对比度变化 #生成batch #shuffle_batch的参数:capacity用于定义shuttle的范围,如果是对整个训练数据集,获取batch,那么capacity就应该够大 #保证数据打的足够乱 images, label_batch = tf.train.shuffle_batch([distorted_image, label],batch_size=batch_size, num_threads=16,capacity=50000,min_after_dequeue=10000) #images, label_batch=tf.train.batch([distorted_image, label],batch_size=batch_size) # 调试显示 #tf.image_summary('images', images) return images, tf.reshape(label_batch, [batch_size])#这个是用于测试阶段,使用的get_batch函数def get_test_batch(image, label, batch_size,crop_size): #数据扩充变换 distorted_image=tf.image.central_crop(image,39./45.) distorted_image = tf.random_crop(distorted_image, [crop_size, crop_size, 3])#随机裁剪 images, label_batch=tf.train.batch([distorted_image, label],batch_size=batch_size) return images, tf.reshape(label_batch, [batch_size])#测试上面的压缩、解压代码def test(): encode_to_tfrecords("data/train.txt","data",(100,100)) image,label=decode_from_tfrecords('data/data.tfrecords') batch_image,batch_label=get_batch(image,label,3)#batch 生成测试 init=tf.initialize_all_variables() with tf.Session() as session: session.run(init) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) for l in range(100000):#每run一次,就会指向下一个样本,一直循环 #image_np,label_np=session.run([image,label])#每调用run一次,那么 '''cv2.imshow("temp",image_np) cv2.waitKey()''' #print label_np #print image_np.shape batch_image_np,batch_label_np=session.run([batch_image,batch_label]) print batch_image_np.shape print batch_label_np.shape coord.request_stop()#queue需要关闭,否则报错 coord.join(threads)#test()
2、网络架构与训练
经过上面的数据格式处理,接着我们只要写一写网络结构、网络优化方法,把数据搞进网络中就可以了,具体示例代码如下:
#coding=utf-8import tensorflow as tffrom data_encoder_decoeder import encode_to_tfrecords,decode_from_tfrecords,get_batch,get_test_batchimport cv2import os class network(object): def __init__(self): with tf.variable_scope("weights"): self.weights={ #39*39*3->36*36*20->18*18*20 'conv1':tf.get_variable('conv1',[4,4,3,20],initializer=tf.contrib.layers.xavier_initializer_conv2d()), #18*18*20->16*16*40->8*8*40 'conv2':tf.get_variable('conv2',[3,3,20,40],initializer=tf.contrib.layers.xavier_initializer_conv2d()), #8*8*40->6*6*60->3*3*60 'conv3':tf.get_variable('conv3',[3,3,40,60],initializer=tf.contrib.layers.xavier_initializer_conv2d()), #3*3*60->120 'fc1':tf.get_variable('fc1',[3*3*60,120],initializer=tf.contrib.layers.xavier_initializer()), #120->6 'fc2':tf.get_variable('fc2',[120,6],initializer=tf.contrib.layers.xavier_initializer()), } with tf.variable_scope("biases"): self.biases={ 'conv1':tf.get_variable('conv1',[20,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)), 'conv2':tf.get_variable('conv2',[40,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)), 'conv3':tf.get_variable('conv3',[60,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)), 'fc1':tf.get_variable('fc1',[120,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)), 'fc2':tf.get_variable('fc2',[6,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)) } def inference(self,images): # 向量转为矩阵 images = tf.reshape(images, shape=[-1, 39,39, 3])# [batch, in_height, in_width, in_channels] images=(tf.cast(images,tf.float32)/255.-0.5)*2#归一化处理 #第一层 conv1=tf.nn.bias_add(tf.nn.conv2d(images, self.weights['conv1'], strides=[1, 1, 1, 1], padding='VALID'), self.biases['conv1']) relu1= tf.nn.relu(conv1) pool1=tf.nn.max_pool(relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') #第二层 conv2=tf.nn.bias_add(tf.nn.conv2d(pool1, self.weights['conv2'], strides=[1, 1, 1, 1], padding='VALID'), self.biases['conv2']) relu2= tf.nn.relu(conv2) pool2=tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') # 第三层 conv3=tf.nn.bias_add(tf.nn.conv2d(pool2, self.weights['conv3'], strides=[1, 1, 1, 1], padding='VALID'), self.biases['conv3']) relu3= tf.nn.relu(conv3) pool3=tf.nn.max_pool(relu3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') # 全连接层1,先把特征图转为向量 flatten = tf.reshape(pool3, [-1, self.weights['fc1'].get_shape().as_list()[0]]) drop1=tf.nn.dropout(flatten,0.5) fc1=tf.matmul(drop1, self.weights['fc1'])+self.biases['fc1'] fc_relu1=tf.nn.relu(fc1) fc2=tf.matmul(fc_relu1, self.weights['fc2'])+self.biases['fc2'] return fc2 def inference_test(self,images): # 向量转为矩阵 images = tf.reshape(images, shape=[-1, 39,39, 3])# [batch, in_height, in_width, in_channels] images=(tf.cast(images,tf.float32)/255.-0.5)*2#归一化处理 #第一层 conv1=tf.nn.bias_add(tf.nn.conv2d(images, self.weights['conv1'], strides=[1, 1, 1, 1], padding='VALID'), self.biases['conv1']) relu1= tf.nn.relu(conv1) pool1=tf.nn.max_pool(relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') #第二层 conv2=tf.nn.bias_add(tf.nn.conv2d(pool1, self.weights['conv2'], strides=[1, 1, 1, 1], padding='VALID'), self.biases['conv2']) relu2= tf.nn.relu(conv2) pool2=tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') # 第三层 conv3=tf.nn.bias_add(tf.nn.conv2d(pool2, self.weights['conv3'], strides=[1, 1, 1, 1], padding='VALID'), self.biases['conv3']) relu3= tf.nn.relu(conv3) pool3=tf.nn.max_pool(relu3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') # 全连接层1,先把特征图转为向量 flatten = tf.reshape(pool3, [-1, self.weights['fc1'].get_shape().as_list()[0]]) fc1=tf.matmul(flatten, self.weights['fc1'])+self.biases['fc1'] fc_relu1=tf.nn.relu(fc1) fc2=tf.matmul(fc_relu1, self.weights['fc2'])+self.biases['fc2'] return fc2 #计算softmax交叉熵损失函数 def sorfmax_loss(self,predicts,labels): predicts=tf.nn.softmax(predicts) labels=tf.one_hot(labels,self.weights['fc2'].get_shape().as_list()[1]) loss =-tf.reduce_mean(labels * tf.log(predicts))# tf.nn.softmax_cross_entropy_with_logits(predicts, labels) self.cost= loss return self.cost #梯度下降 def optimer(self,loss,lr=0.001): train_optimizer = tf.train.GradientDescentOptimizer(lr).minimize(loss) return train_optimizer def train(): encode_to_tfrecords("data/train.txt","data",'train.tfrecords',(45,45)) image,label=decode_from_tfrecords('data/train.tfrecords') batch_image,batch_label=get_batch(image,label,batch_size=50,crop_size=39)#batch 生成测试 #网络链接,训练所用 net=network() inf=net.inference(batch_image) loss=net.sorfmax_loss(inf,batch_label) opti=net.optimer(loss) #验证集所用 encode_to_tfrecords("data/val.txt","data",'val.tfrecords',(45,45)) test_image,test_label=decode_from_tfrecords('data/val.tfrecords',num_epoch=None) test_images,test_labels=get_test_batch(test_image,test_label,batch_size=120,crop_size=39)#batch 生成测试 test_inf=net.inference_test(test_images) correct_prediction = tf.equal(tf.cast(tf.argmax(test_inf,1),tf.int32), test_labels) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) init=tf.initialize_all_variables() with tf.Session() as session: session.run(init) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) max_iter=100000 iter=0 if os.path.exists(os.path.join("model",'model.ckpt')) is True: tf.train.Saver(max_to_keep=None).restore(session, os.path.join("model",'model.ckpt')) while iter<max_iter: loss_np,_,label_np,image_np,inf_np=session.run([loss,opti,batch_label,batch_image,inf]) #print image_np.shape #cv2.imshow(str(label_np[0]),image_np[0]) #print label_np[0] #cv2.waitKey() #print label_np if iter%50==0: print 'trainloss:',loss_np if iter%500==0: accuracy_np=session.run([accuracy]) print '***************test accruacy:',accuracy_np,'*******************' tf.train.Saver(max_to_keep=None).save(session, os.path.join('model','model.ckpt')) iter+=1 coord.request_stop()#queue需要关闭,否则报错 coord.join(threads) train()
3、可视化显示
(1)首先再源码中加入需要跟踪的变量:
tf.scalar_summary("cost_function", loss)#损失函数值
(2)然后定义执行操作:
merged_summary_op = tf.merge_all_summaries()
(3)再session中定义保存路径:
summary_writer = tf.train.SummaryWriter('log', session.graph)
(4)然后再session执行的时候,保存:
summary_str,loss_np,_=session.run([merged_summary_op,loss,opti]) summary_writer.add_summary(summary_str, iter)
(5)最后只要训练完毕后,直接再终端输入命令:
python /usr/local/lib/python2.7/dist-packages/tensorflow/tensorboard/tensorboard.py --logdir=log
然后打开浏览器网址:
http://0.0.0.0:6006
即可观训练曲线。
4、测试阶段
测试阶段主要是直接通过加载图模型、读取参数等,然后直接通过tensorflow的相关函数,进行调用,而不需要网络架构相关的代码;通过内存feed_dict的方式,对相关的输入节点赋予相关的数据,进行前向传导,并获取相关的节点数值。
#coding=utf-8import tensorflow as tfimport osimport cv2 def load_model(session,netmodel_path,param_path): new_saver = tf.train.import_meta_graph(netmodel_path) new_saver.restore(session, param_path) x= tf.get_collection('test_images')[0]#在训练阶段需要调用tf.add_to_collection('test_images',test_images),保存之 y = tf.get_collection("test_inf")[0] batch_size = tf.get_collection("batch_size")[0] return x,y,batch_size def load_images(data_root): filename_queue = tf.train.string_input_producer(data_root) image_reader = tf.WholeFileReader() key,image_file = image_reader.read(filename_queue) image = tf.image.decode_jpeg(image_file) return image, key def test(data_root="data/race/cropbrown"): image_filenames=os.listdir(data_root) image_filenames=[(data_root+'/'+i) for i in image_filenames] #print cv2.imread(image_filenames[0]).shape #image,key=load_images(image_filenames) race_listsrc=['black','brown','white','yellow'] with tf.Session() as session: coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) x,y,batch_size=load_model(session,os.path.join("model",'model_ori_race.ckpt.meta'), os.path.join("model",'model_ori_race.ckpt')) predict_label=tf.cast(tf.argmax(y,1),tf.int32) print x.get_shape() for imgf in image_filenames: image=cv2.imread(imgf) image=cv2.resize(image,(76,76)).reshape((1,76,76,3)) print "cv shape:",image.shape #cv2.imshow("t",image_np[:,:,::-1]) y_np=session.run(predict_label,feed_dict = {x:image, batch_size:1}) print race_listsrc[y_np] coord.request_stop()#queue需要关闭,否则报错 coord.join(threads)
4、移植阶段
(1)一个算法经过实验阶段后,接着就要进入移植商用,因此接着需要采用tensorflow的c api函数,直接进行预测推理,首先我们先把tensorflow编译成链接库,然后编写cmake,调用tensorflow链接库:
bazel build -c opt //tensorflow:libtensorflow.so
在bazel-bin/tensorflow目录下会生成libtensorflow.so文件
5、C++ API调用、cmake 编写:
三、熟悉常用API
1、LSTM使用
import tensorflow.nn.rnn_cell lstm = rnn_cell.BasicLSTMCell(lstm_size)#创建一个lstm cell单元类,隐藏层神经元个数为lstm_size state = tf.zeros([batch_size, lstm.state_size])#一个序列隐藏层的状态值 loss = 0.0for current_batch_of_words in words_in_dataset: output, state = lstm(current_batch_of_words, state)#返回值为隐藏层神经元的输出 logits = tf.matmul(output, softmax_w) + softmax_b#matmul矩阵点乘 probabilities = tf.nn.softmax(logits)#softmax输出 loss += loss_function(probabilities, target_words)
1、one-hot函数:
#ont hot 可以把训练数据的标签,直接转换成one_hot向量,用于交叉熵损失函数import tensorflow as tfa=tf.convert_to_tensor([[1],[2],[4]])b=tf.one_hot(a,5)
b的值为
[[[ 0. 1. 0. 0. 0.]] [[ 0. 0. 1. 0. 0.]] [[ 0. 0. 0. 0. 1.]]]
2、assign_sub
import tensorflow as tf x = tf.Variable(10, name="x")sub=x.assign_sub(3)#如果直接采用x.assign_sub,那么可以看到x的值也会发生变化init_op=tf.initialize_all_variables()with tf.Session() as sess: sess.run(init_op) print sub.eval() print x.eval()
可以看到输入sub=x=7
state_ops.assign_sub
采用state_ops的assign_sub也是同样sub=x=7
也就是说assign函数返回结果值的同时,变量本身的值也会被改变
3、变量查看
#查看所有的变量 for l in tf.all_variables(): print l.name
4、slice函数:
import cv2import tensorflow as tf#slice 函数可以用于切割子矩形图片,参数矩形框的rect,begin=(minx,miny),size=(width,height)minx=20miny=30height=100width=200 image=tf.placeholder(dtype=tf.uint8,shape=(386,386,3))rect_image=tf.slice(image,(miny,minx,0),(height,width,-1)) cvimage=cv2.imread("1.jpg")cv2.imshow("cv2",cvimage[miny:(miny+height),minx:(minx+width),:]) with tf.Session() as sess: tfimage=sess.run([rect_image],{image:cvimage}) cv2.imshow('tf',tfimage[0])cv2.waitKey()
5、正太分布随机初始化
tf.truncated_normal
6、打印操作运算在硬件设备信息
tf.ConfigProto(log_device_placement=True)
7、变量域名的reuse:
import tensorflow as tfwith tf.variable_scope('foo'):#在没有启用reuse的情况下,如果该变量还未被创建,那么就创建该变量,如果已经创建过了,那么就获取该共享变量 v=tf.get_variable('v',[1])with tf.variable_scope('foo',reuse=True):#如果启用了reuse,那么编译的时候,如果get_variable没有遇到一个已经创建的变量,是会出错的 v1=tf.get_variable('v1',[1])
8、allow_soft_placement的使用:allow_soft_placement=True,允许当在代码中指定tf.device设备,如果设备找不到,那么就采用默认的设备。如果该参数设置为false,当设备找不到的时候,会直接编译不通过。
9、batch normalize调用:
tf.contrib.layers.batch_norm(x, decay=0.9, updates_collections=None, epsilon=self.epsilon, scale=True, scope=self.name)
Original url: Access
Created at: 2019-12-11 11:47:22
Category: default
Tags: none
未标明原创文章均为采集,版权归作者所有,转载无需和我联系,请注明原出处,南摩阿彌陀佛,知识,不只知道,要得到
最新评论