深度学习(五十六)tensorflow项目构建流程 - hjimce的专栏

tensorflow项目构建流程

博客http://blog.csdn.net/hjimce

微博黄锦池-hjimce qq:1393852684

一、构建路线

个人感觉对于任何一个深度学习库,如mxnet、tensorflow、theano、caffe等,基本上我都采用同样的一个学习流程,大体流程如下:

(1)训练阶段:数据打包-》网络构建、训练-》模型保存-》可视化查看损失函数、验证精度

(2)测试阶段:模型加载-》测试图片读取-》预测显示结果

(3)移植阶段:量化、压缩加速-》微调-》C++移植打包-》上线

这边我就以tensorflow为例子,讲解整个流程的大体架构,完成一个深度学习项目所需要熟悉的过程代码。

二、训练、测试阶段

1、tensorflow打包数据

这一步对于tensorflow来说,也可以直接自己在线读取:.jpg图片、标签文件等,然后通过phaceholder变量,把数据送入网络中,进行计算。

不过这种效率比较低,对于大规模训练数据来说,我们需要一个比较高效的方式,tensorflow建议我们采用tfrecoder进行高效数据读取。学习tensorflow一定要学会tfrecoder文件写入、读取,具体示例代码如下:

#coding=utf-8#tensorflow高效数据读取训练import tensorflow as tfimport cv2 #把train.txt文件格式,每一行:图片路径名   类别标签#奖数据打包,转换成tfrecords格式,以便后续高效读取def encode_to_tfrecords(lable_file,data_root,new_name='data.tfrecords',resize=None):    writer=tf.python_io.TFRecordWriter(data_root+'/'+new_name)    num_example=0    with open(lable_file,'r') as f:        for l in f.readlines():            l=l.split()            image=cv2.imread(data_root+"/"+l[0])            if resize is not None:                image=cv2.resize(image,resize)#为了            height,width,nchannel=image.shape             label=int(l[1])             example=tf.train.Example(features=tf.train.Features(feature={                'height':tf.train.Feature(int64_list=tf.train.Int64List(value=[height])),                'width':tf.train.Feature(int64_list=tf.train.Int64List(value=[width])),                'nchannel':tf.train.Feature(int64_list=tf.train.Int64List(value=[nchannel])),                'image':tf.train.Feature(bytes_list=tf.train.BytesList(value=[image.tobytes()])),                'label':tf.train.Feature(int64_list=tf.train.Int64List(value=[label]))            }))            serialized=example.SerializeToString()            writer.write(serialized)            num_example+=1    print lable_file,"样本数据量:",num_example    writer.close()#读取tfrecords文件def decode_from_tfrecords(filename,num_epoch=None):    filename_queue=tf.train.string_input_producer([filename],num_epochs=num_epoch)#因为有的训练数据过于庞大,被分成了很多个文件,所以第一个参数就是文件列表名参数    reader=tf.TFRecordReader()    _,serialized=reader.read(filename_queue)    example=tf.parse_single_example(serialized,features={        'height':tf.FixedLenFeature([],tf.int64),        'width':tf.FixedLenFeature([],tf.int64),        'nchannel':tf.FixedLenFeature([],tf.int64),        'image':tf.FixedLenFeature([],tf.string),        'label':tf.FixedLenFeature([],tf.int64)    })    label=tf.cast(example['label'], tf.int32)    image=tf.decode_raw(example['image'],tf.uint8)    image=tf.reshape(image,tf.pack([        tf.cast(example['height'], tf.int32),        tf.cast(example['width'], tf.int32),        tf.cast(example['nchannel'], tf.int32)]))    #label=example['label']    return image,label#根据队列流数据格式,解压出一张图片后,输入一张图片,对其做预处理、及样本随机扩充def get_batch(image, label, batch_size,crop_size):        #数据扩充变换    distorted_image = tf.random_crop(image, [crop_size, crop_size, 3])#随机裁剪    distorted_image = tf.image.random_flip_up_down(distorted_image)#上下随机翻转    #distorted_image = tf.image.random_brightness(distorted_image,max_delta=63)#亮度变化    #distorted_image = tf.image.random_contrast(distorted_image,lower=0.2, upper=1.8)#对比度变化     #生成batch    #shuffle_batch的参数:capacity用于定义shuttle的范围,如果是对整个训练数据集,获取batch,那么capacity就应该够大    #保证数据打的足够乱    images, label_batch = tf.train.shuffle_batch([distorted_image, label],batch_size=batch_size,                                                 num_threads=16,capacity=50000,min_after_dequeue=10000)    #images, label_batch=tf.train.batch([distorted_image, label],batch_size=batch_size)       # 调试显示    #tf.image_summary('images', images)    return images, tf.reshape(label_batch, [batch_size])#这个是用于测试阶段,使用的get_batch函数def get_test_batch(image, label, batch_size,crop_size):        #数据扩充变换    distorted_image=tf.image.central_crop(image,39./45.)    distorted_image = tf.random_crop(distorted_image, [crop_size, crop_size, 3])#随机裁剪    images, label_batch=tf.train.batch([distorted_image, label],batch_size=batch_size)    return images, tf.reshape(label_batch, [batch_size])#测试上面的压缩、解压代码def test():    encode_to_tfrecords("data/train.txt","data",(100,100))    image,label=decode_from_tfrecords('data/data.tfrecords')    batch_image,batch_label=get_batch(image,label,3)#batch 生成测试    init=tf.initialize_all_variables()    with tf.Session() as session:        session.run(init)        coord = tf.train.Coordinator()        threads = tf.train.start_queue_runners(coord=coord)        for l in range(100000):#每run一次,就会指向下一个样本,一直循环            #image_np,label_np=session.run([image,label])#每调用run一次,那么            '''cv2.imshow("temp",image_np)            cv2.waitKey()'''            #print label_np            #print image_np.shape              batch_image_np,batch_label_np=session.run([batch_image,batch_label])            print batch_image_np.shape            print batch_label_np.shape           coord.request_stop()#queue需要关闭,否则报错        coord.join(threads)#test()

2、网络架构与训练

经过上面的数据格式处理,接着我们只要写一写网络结构、网络优化方法,把数据搞进网络中就可以了,具体示例代码如下:

#coding=utf-8import  tensorflow as tffrom  data_encoder_decoeder import  encode_to_tfrecords,decode_from_tfrecords,get_batch,get_test_batchimport  cv2import  os class network(object):    def __init__(self):        with tf.variable_scope("weights"):            self.weights={                #39*39*3->36*36*20->18*18*20                'conv1':tf.get_variable('conv1',[4,4,3,20],initializer=tf.contrib.layers.xavier_initializer_conv2d()),                #18*18*20->16*16*40->8*8*40                'conv2':tf.get_variable('conv2',[3,3,20,40],initializer=tf.contrib.layers.xavier_initializer_conv2d()),                #8*8*40->6*6*60->3*3*60                'conv3':tf.get_variable('conv3',[3,3,40,60],initializer=tf.contrib.layers.xavier_initializer_conv2d()),                #3*3*60->120                'fc1':tf.get_variable('fc1',[3*3*60,120],initializer=tf.contrib.layers.xavier_initializer()),                #120->6                'fc2':tf.get_variable('fc2',[120,6],initializer=tf.contrib.layers.xavier_initializer()),                }        with tf.variable_scope("biases"):            self.biases={                'conv1':tf.get_variable('conv1',[20,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),                'conv2':tf.get_variable('conv2',[40,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),                'conv3':tf.get_variable('conv3',[60,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),                'fc1':tf.get_variable('fc1',[120,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32)),                'fc2':tf.get_variable('fc2',[6,],initializer=tf.constant_initializer(value=0.0, dtype=tf.float32))             }     def inference(self,images):        # 向量转为矩阵        images = tf.reshape(images, shape=[-1, 39,39, 3])# [batch, in_height, in_width, in_channels]        images=(tf.cast(images,tf.float32)/255.-0.5)*2#归一化处理           #第一层        conv1=tf.nn.bias_add(tf.nn.conv2d(images, self.weights['conv1'], strides=[1, 1, 1, 1], padding='VALID'),                             self.biases['conv1'])         relu1= tf.nn.relu(conv1)        pool1=tf.nn.max_pool(relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')          #第二层        conv2=tf.nn.bias_add(tf.nn.conv2d(pool1, self.weights['conv2'], strides=[1, 1, 1, 1], padding='VALID'),                             self.biases['conv2'])        relu2= tf.nn.relu(conv2)        pool2=tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')          # 第三层        conv3=tf.nn.bias_add(tf.nn.conv2d(pool2, self.weights['conv3'], strides=[1, 1, 1, 1], padding='VALID'),                             self.biases['conv3'])        relu3= tf.nn.relu(conv3)        pool3=tf.nn.max_pool(relu3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')          # 全连接层1,先把特征图转为向量        flatten = tf.reshape(pool3, [-1, self.weights['fc1'].get_shape().as_list()[0]])         drop1=tf.nn.dropout(flatten,0.5)        fc1=tf.matmul(drop1, self.weights['fc1'])+self.biases['fc1']         fc_relu1=tf.nn.relu(fc1)         fc2=tf.matmul(fc_relu1, self.weights['fc2'])+self.biases['fc2']         return  fc2    def inference_test(self,images):                # 向量转为矩阵        images = tf.reshape(images, shape=[-1, 39,39, 3])# [batch, in_height, in_width, in_channels]        images=(tf.cast(images,tf.float32)/255.-0.5)*2#归一化处理           #第一层        conv1=tf.nn.bias_add(tf.nn.conv2d(images, self.weights['conv1'], strides=[1, 1, 1, 1], padding='VALID'),                             self.biases['conv1'])         relu1= tf.nn.relu(conv1)        pool1=tf.nn.max_pool(relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')          #第二层        conv2=tf.nn.bias_add(tf.nn.conv2d(pool1, self.weights['conv2'], strides=[1, 1, 1, 1], padding='VALID'),                             self.biases['conv2'])        relu2= tf.nn.relu(conv2)        pool2=tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')          # 第三层        conv3=tf.nn.bias_add(tf.nn.conv2d(pool2, self.weights['conv3'], strides=[1, 1, 1, 1], padding='VALID'),                             self.biases['conv3'])        relu3= tf.nn.relu(conv3)        pool3=tf.nn.max_pool(relu3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')          # 全连接层1,先把特征图转为向量        flatten = tf.reshape(pool3, [-1, self.weights['fc1'].get_shape().as_list()[0]])         fc1=tf.matmul(flatten, self.weights['fc1'])+self.biases['fc1']        fc_relu1=tf.nn.relu(fc1)         fc2=tf.matmul(fc_relu1, self.weights['fc2'])+self.biases['fc2']         return  fc2     #计算softmax交叉熵损失函数    def sorfmax_loss(self,predicts,labels):        predicts=tf.nn.softmax(predicts)        labels=tf.one_hot(labels,self.weights['fc2'].get_shape().as_list()[1])        loss =-tf.reduce_mean(labels * tf.log(predicts))# tf.nn.softmax_cross_entropy_with_logits(predicts, labels)        self.cost= loss        return self.cost    #梯度下降    def optimer(self,loss,lr=0.001):        train_optimizer = tf.train.GradientDescentOptimizer(lr).minimize(loss)         return train_optimizer  def train():    encode_to_tfrecords("data/train.txt","data",'train.tfrecords',(45,45))    image,label=decode_from_tfrecords('data/train.tfrecords')    batch_image,batch_label=get_batch(image,label,batch_size=50,crop_size=39)#batch 生成测试          #网络链接,训练所用    net=network()    inf=net.inference(batch_image)    loss=net.sorfmax_loss(inf,batch_label)    opti=net.optimer(loss)      #验证集所用    encode_to_tfrecords("data/val.txt","data",'val.tfrecords',(45,45))    test_image,test_label=decode_from_tfrecords('data/val.tfrecords',num_epoch=None)    test_images,test_labels=get_test_batch(test_image,test_label,batch_size=120,crop_size=39)#batch 生成测试    test_inf=net.inference_test(test_images)    correct_prediction = tf.equal(tf.cast(tf.argmax(test_inf,1),tf.int32), test_labels)    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))         init=tf.initialize_all_variables()    with tf.Session() as session:        session.run(init)        coord = tf.train.Coordinator()        threads = tf.train.start_queue_runners(coord=coord)        max_iter=100000        iter=0        if os.path.exists(os.path.join("model",'model.ckpt')) is True:            tf.train.Saver(max_to_keep=None).restore(session, os.path.join("model",'model.ckpt'))        while iter<max_iter:            loss_np,_,label_np,image_np,inf_np=session.run([loss,opti,batch_label,batch_image,inf])            #print image_np.shape            #cv2.imshow(str(label_np[0]),image_np[0])            #print label_np[0]            #cv2.waitKey()            #print label_np            if iter%50==0:                print 'trainloss:',loss_np            if iter%500==0:                accuracy_np=session.run([accuracy])                print '***************test accruacy:',accuracy_np,'*******************'                tf.train.Saver(max_to_keep=None).save(session, os.path.join('model','model.ckpt'))            iter+=1             coord.request_stop()#queue需要关闭,否则报错        coord.join(threads) train()

3、可视化显示

(1)首先再源码中加入需要跟踪的变量:

tf.scalar_summary("cost_function", loss)#损失函数值

(2)然后定义执行操作:

merged_summary_op = tf.merge_all_summaries()

(3)再session中定义保存路径:

summary_writer = tf.train.SummaryWriter('log', session.graph)

(4)然后再session执行的时候,保存:

            summary_str,loss_np,_=session.run([merged_summary_op,loss,opti])            summary_writer.add_summary(summary_str, iter)

(5)最后只要训练完毕后,直接再终端输入命令:

python /usr/local/lib/python2.7/dist-packages/tensorflow/tensorboard/tensorboard.py --logdir=log

然后打开浏览器网址:

http://0.0.0.0:6006

即可观训练曲线。

4、测试阶段

测试阶段主要是直接通过加载图模型、读取参数等,然后直接通过tensorflow的相关函数,进行调用,而不需要网络架构相关的代码;通过内存feed_dict的方式,对相关的输入节点赋予相关的数据,进行前向传导,并获取相关的节点数值。

#coding=utf-8import  tensorflow  as tfimport  osimport  cv2 def load_model(session,netmodel_path,param_path):    new_saver = tf.train.import_meta_graph(netmodel_path)    new_saver.restore(session, param_path)    x= tf.get_collection('test_images')[0]#在训练阶段需要调用tf.add_to_collection('test_images',test_images),保存之    y = tf.get_collection("test_inf")[0]    batch_size = tf.get_collection("batch_size")[0]    return  x,y,batch_size def load_images(data_root):    filename_queue = tf.train.string_input_producer(data_root)    image_reader = tf.WholeFileReader()    key,image_file = image_reader.read(filename_queue)    image = tf.image.decode_jpeg(image_file)    return image, key def test(data_root="data/race/cropbrown"):    image_filenames=os.listdir(data_root)    image_filenames=[(data_root+'/'+i) for i in image_filenames]      #print cv2.imread(image_filenames[0]).shape    #image,key=load_images(image_filenames)    race_listsrc=['black','brown','white','yellow']    with tf.Session() as session:        coord = tf.train.Coordinator()        threads = tf.train.start_queue_runners(coord=coord)           x,y,batch_size=load_model(session,os.path.join("model",'model_ori_race.ckpt.meta'),                       os.path.join("model",'model_ori_race.ckpt'))        predict_label=tf.cast(tf.argmax(y,1),tf.int32)        print x.get_shape()        for imgf in image_filenames:            image=cv2.imread(imgf)            image=cv2.resize(image,(76,76)).reshape((1,76,76,3))            print "cv shape:",image.shape              #cv2.imshow("t",image_np[:,:,::-1])            y_np=session.run(predict_label,feed_dict = {x:image, batch_size:1})            print race_listsrc[y_np]          coord.request_stop()#queue需要关闭,否则报错        coord.join(threads)

4、移植阶段

(1)一个算法经过实验阶段后,接着就要进入移植商用,因此接着需要采用tensorflow的c api函数,直接进行预测推理,首先我们先把tensorflow编译成链接库,然后编写cmake,调用tensorflow链接库:

bazel build -c opt //tensorflow:libtensorflow.so

在bazel-bin/tensorflow目录下会生成libtensorflow.so文件

5、C++ API调用、cmake 编写:

三、熟悉常用API

1、LSTM使用

import  tensorflow.nn.rnn_cell lstm = rnn_cell.BasicLSTMCell(lstm_size)#创建一个lstm cell单元类,隐藏层神经元个数为lstm_size state = tf.zeros([batch_size, lstm.state_size])#一个序列隐藏层的状态值 loss = 0.0for current_batch_of_words in words_in_dataset:    output, state = lstm(current_batch_of_words, state)#返回值为隐藏层神经元的输出    logits = tf.matmul(output, softmax_w) + softmax_b#matmul矩阵点乘    probabilities = tf.nn.softmax(logits)#softmax输出    loss += loss_function(probabilities, target_words)

1、one-hot函数:

#ont hot 可以把训练数据的标签,直接转换成one_hot向量,用于交叉熵损失函数import tensorflow as tfa=tf.convert_to_tensor([[1],[2],[4]])b=tf.one_hot(a,5)
b的值为
[[[ 0.  1.  0.  0.  0.]]  [[ 0.  0.  1.  0.  0.]]  [[ 0.  0.  0.  0.  1.]]]

2、assign_sub

import tensorflow as tf x = tf.Variable(10, name="x")sub=x.assign_sub(3)#如果直接采用x.assign_sub,那么可以看到x的值也会发生变化init_op=tf.initialize_all_variables()with tf.Session() as sess:    sess.run(init_op)    print sub.eval()    print x.eval()

可以看到输入sub=x=7

state_ops.assign_sub

采用state_ops的assign_sub也是同样sub=x=7

也就是说assign函数返回结果值的同时,变量本身的值也会被改变
3、变量查看

    #查看所有的变量    for l in tf.all_variables():        print l.name

4、slice函数:

import cv2import  tensorflow as tf#slice 函数可以用于切割子矩形图片,参数矩形框的rect,begin=(minx,miny),size=(width,height)minx=20miny=30height=100width=200 image=tf.placeholder(dtype=tf.uint8,shape=(386,386,3))rect_image=tf.slice(image,(miny,minx,0),(height,width,-1))  cvimage=cv2.imread("1.jpg")cv2.imshow("cv2",cvimage[miny:(miny+height),minx:(minx+width),:])  with tf.Session() as sess:    tfimage=sess.run([rect_image],{image:cvimage})    cv2.imshow('tf',tfimage[0])cv2.waitKey()

5、正太分布随机初始化

tf.truncated_normal

6、打印操作运算在硬件设备信息

tf.ConfigProto(log_device_placement=True)

7、变量域名的reuse:

import  tensorflow as tfwith tf.variable_scope('foo'):#在没有启用reuse的情况下,如果该变量还未被创建,那么就创建该变量,如果已经创建过了,那么就获取该共享变量    v=tf.get_variable('v',[1])with tf.variable_scope('foo',reuse=True):#如果启用了reuse,那么编译的时候,如果get_variable没有遇到一个已经创建的变量,是会出错的    v1=tf.get_variable('v1',[1])

8、allow_soft_placement的使用:allow_soft_placement=True,允许当在代码中指定tf.device设备,如果设备找不到,那么就采用默认的设备。如果该参数设置为false,当设备找不到的时候,会直接编译不通过。

9、batch normalize调用:

tf.contrib.layers.batch_norm(x, decay=0.9, updates_collections=None, epsilon=self.epsilon, scale=True, scope=self.name)

Original url: Access
Created at: 2019-12-11 11:47:22
Category: default
Tags: none

请先后发表评论
  • 最新评论
  • 总共0条评论