之前说到,递归是一种将大问题分解为小问题的解决方案。一般来说,递归被称为函数自身的调用。这么说可能听起来很奇怪,事实上在递归中,函数确实必须调用自己。
例如在数学中,我们都知道“阶乘”的概念。例如5的阶乘就是5*4*3*2*1
。
我们可以总结出求n的阶乘的规律,即 n! = n * (n -1) !
这就体现了递归。你可以从中发现,我们把求5的阶乘一步一步转化成了另外一个个的小问题。
function factorial(int $n): int
{
if ($n = 0) {
return 1;
}
return $n * factorial($n - 1);
}
看上面的代码,我们可以看到对于阶乘问题的解决方案我们有一个基础的条件就是当n为0的时候,我们返回1。如果不符合这个条件,我们返回n
乘 factorial(n)
,这符合递归特性的第一条和第三条。我们避免了循环调用,因为我们把每一次的递归调用都分解成了大问题的一个小的子问题。上面的算法思想可以表达成:
[
](https://user-gold-cdn.xitu.io/2018/6/24/16430cc8a43542d0?w=664&h=150&f=png&s=16293)
上面的递归代码我们同样可以使用迭代的方法实现
function factorial(int $n): int
{
$result = 1;
for ($i = $n; $i > 0; $i--) {
$result*= $n;
}
return $result;
}
如果一个问题可以很容易的使用迭代来解决,我们为何要使用递归?
递归是用来处理更加复杂的问题的,不是所有的问题都可以简单的使用迭代来解决的。递归使用函数调用来管理调用栈,所以相比于迭代递归会使用更多和时间以及内存。此外,在迭代中,我们每一步都会有一个结果,但是在递归中我们必须等到base case执行结束才会有任何结果。看上面的例子,我们发现在递归算法中我们没有任何变量或者声明来保存结果,而在迭代算法中,我们每一次都用$result来保存了返回结果。
在数学中,斐波那契数列是一个特殊的整数数列,数列中的每一个数的是由另外两个数求和产生的。规则如下:
[
](https://user-gold-cdn.xitu.io/2018/6/24/16430de8622aaed4?w=708&h=196&f=png&s=18280)
function fibonacci($n)
{
if ($n == 0) {
return 0;
}
if ($n == 1) {
return 1;
}
return fibonacci($n - 1) + fibonacci($ - 2);
}
另外一个使用递归算法的常见问题是求两个数的最大公因数。
[
](https://user-gold-cdn.xitu.io/2018/6/24/16430fe322b72fa9?w=786&h=216&f=png&s=18955)
function gcd(int $a, int $b)
{
if ($b == 0) {
return $a;
}
return gcd($b, $a % $b);
}
在每一次递归调用中,函数只调用自己一次,这就叫做线性递归。
在二分递归中,每一次递归调用函数调用自己两次。求解斐波那契数列的算法就是二分递归,除此之外还有二分查找、分治算法、归并排序等也使用了二分递归。
当一个递归返回的时候没有等待的操作的时候就称为尾递归。斐波那契算法中,返回值需要乘以前一个递归的返回值,因此他不是尾递归,而求解最大公因式的算法是尾递归。尾递归是线性递归的一种形式。
例如在每一次递归调用中 有 A() 调用 B(), B() 调用 A() ,这样的递归就叫做相互递归。
当一个递归函数把自己作为一个参数进行递归调用时,就叫做嵌套递归。一个常见的栗子就是阿克曼函数,看下面的表达。
[
](https://user-gold-cdn.xitu.io/2018/6/24/164312030b275c04?w=800&h=156&f=png&s=28292)
看最后一行的,可以看到第二个参数就是递归函数自己。
下一篇内容会使用递归解决一些实际开发中会遇到的问题,例如构建N级分类、构建嵌套评论、目录文件的遍历等等。
PHP基础数据结构专题系列目录地址:地址 主要使用PHP语法总结基础的数据结构和算法。还有我们日常PHP开发中容易忽略的基础知识和现代PHP开发中关于规范、部署、优化的一些实战性建议,同时还有对Javascript语言特点的深入研究。
Original url: Access
Created at: 2018-10-10 17:33:02
Category: default
Tags: none
未标明原创文章均为采集,版权归作者所有,转载无需和我联系,请注明原出处,南摩阿彌陀佛,知识,不只知道,要得到
java windows火焰图_mob64ca12ec8020的技术博客_51CTO博客 - 在windows下不可行,不知道作者是怎样搞的 监听SpringBoot 服务启动成功事件并打印信息_监听springboot启动完毕-CSDN博客 SpringBoot中就绪探针和存活探针_management.endpoint.health.probes.enabled-CSDN博客 u2u转换板 - 嘉立创EDA开源硬件平台 Spring Boot 项目的轻量级 HTTP 客户端 retrofit 框架,快来试试它!_Java精选-CSDN博客 手把手教你打造一套最牛的知识笔记管理系统! - 知乎 - 想法有重合-理论可参考 安宇雨 闲鱼 机械键盘 客制化 开贴记录 文本 linux 使用find命令查找包含某字符串的文件_beijihukk的博客-CSDN博客_find 查找字符串 ---- mac 也适用 安宇雨 打字音 记录集合 B站 bilibili 自行搭建 开坑 真正的客制化 安宇雨 黑苹果开坑 查找工具包maven pom 引用地 工具网站 Dantelis 介绍的玩轴入坑攻略 --- 关于轴的一些说法 --- 非官方 ---- 心得而已 --- 长期开坑更新 [本人问题][新开坑位]关于自动化测试的工具与平台应用 机械键盘 开团 网站记录 -- 能做一个收集的程序就好了 不过现在没时间 -- 信息大多是在群里发的 - 你要让垃圾佬 都去一个地方看难度也是很大的 精神支柱 [超级前台]sprinbboot maven superdesk-app 记录 [信息有用] [环境准备] [基本完成] [sebp/elk] 给已创建的Docker容器增加新的端口映射 - qq_30599553的博客 - CSDN博客 [正在研究] Elasticsearch, Logstash, Kibana (ELK) Docker image documentation elasticsearch centos 安装记录 及 启动手记 正式服务器 39 elasticsearch 问题合集 不断更新 6.1.1 | 6.5.1 两个版本 博客程序 - 测试 - bug记录 等等问题 laravel的启动过程解析 - lpfuture - 博客园 OAuth2 Server PHP 用 Laravel 搭建带 OAuth2 验证的 RESTful 服务 | Laravel China 社区 - 高品质的 Laravel 和 PHP 开发者社区 利用Laravel 搭建oauth2 API接口 附 Unauthenticated 解决办法 - 煮茶的博客 - SegmentFault 思否 使用 OAuth2-Server-php 搭建 OAuth2 Server - 午时的海 - 博客园 基于PHP构建OAuth 2.0 服务端 认证平台 - Endv - 博客园 Laravel 的 Artisan 命令行工具 Laravel 的文件系统和云存储功能集成 浅谈Chromium中的设计模式--终--Observer模式 浅谈Chromium中的设计模式--二--pre/post和Delegate模式 浅谈Chromium中的设计模式--一--Chromium中模块分层和进程模型 DeepMind 4 Hacking Yourself README.md update 20211011
Laravel China 简书 知乎 博客园 CSDN博客 开源中国 Go Further Ryan是菜鸟 | LNMP技术栈笔记 云栖社区-阿里云 Netflix技术博客 Techie Delight Linkedin技术博客 Dropbox技术博客 Facebook技术博客 淘宝中间件团队 美团技术博客 360技术博客 古巷博客 - 一个专注于分享的不正常博客 软件测试知识传播 - 测试窝 有赞技术团队 阮一峰 语雀 静觅丨崔庆才的个人博客 软件测试从业者综合能力提升 - isTester IBM Java 开发 使用开放 Java 生态系统开发现代应用程序 pengdai 一个强大的博主 HTML5资源教程 | 分享HTML5开发资源和开发教程 蘑菇博客 - 专注于技术分享的博客平台 个人博客-leapMie 流星007 CSDN博客 - 舍其小伙伴 稀土掘金 Go 技术论坛 | Golang / Go 语言中国知识社区
最新评论